## How would you add two numbers?

Let’s say I have to add 35 and 59.

35 + 59 would mean first add 5+9 = 14. Write 4 and carry over1. Then add this 1 to 3 and 5 which comes to 9. So our answer is 94. This is how we were taught in school. Now we will learn to do this at magical speed. However, before we delve into the quick addition method discussed in this post, check out how to avoid carryover while adding numbers.

We draw this line separator that divides the numbers into units, tens, hundreds and so on. We then add numbers in the same place or rather column together moving from left to right rather than right to left.

In our example we draw a line between 3 and 5 in 35 and 5 and 9 in 59. We add 3 and 5 first which is 8. Since it is at tens place this 8 is not 8 but 80. Now add 5 + 9 = 14. Now 14 = 10 +4, so we write 4 in the units place and carry over 1 or 10 to 3+5 or 30 + 50. And it becomes 80 + 10 +4.

3 / 5
5 / 9
——-
80
14
——-
94

At this stage you might be wondering what I am doing. Complicating things unnecessarily?

Well as of now you just added two digit numbers, once you get the hang of the concept you will be able to add 4 digit numbers also in a matter of seconds. Let me take some bigger numbers to demonstrate that.

Example: 986 + 37

98 / 6
3 / 7
——–
101
13
——-
1023

As you see 1010 + 10 +3 = 1023
To add 98 + 3 is a lot easier than adding 986 +37.
Now let us try adding two 3 digit numbers. Example: 575 + 789

57 / 5
78 / 9

Here we again break them i.e.
5/7/5
7/8/9
———
12+
15+
14 this 4 is written in the units place without thinking

So it becomes
4
6 (5+1 i.e. 1 from 14 and 5 from 15)
13 (12+1 i.e. 12 and 1 from 15)
———–
1364

Now isn’t this method making much more sense? Similarly, if you wish to add consecutive numbers in a jiffy, here’s the shortcut trick to add consecutive numbers.

With some practice you will not even need to scribble this on paper.
Practice 20 to 30 additions and you will be doing it all mentally.  Don’t believe me. Give it a try and see it for yourself.

## “Carry” in Addition – Can it be Avoided?

Carrying over is a concept taught to us at a very early stage of our life. However, it has never been an easy thing to do. In adding two or more numbers, most of us face problem while “carrying over”. Larger the digits, involved in the numbers to be added, more likely it is to involve carrying.   More the carrying over involved, more likely are we to make mistakes.

Friends, remember the most basic and effective rule of making arithmetic fast and quick is to break difficult calculations into simpler, easily manageable small calculations.

Any digit when added to 9 (except 0) makes carrying over mandatory.  On the contrary, anything added to 0 can’t produce a two digit number.  Even if 9 is added to 0, no carrying is needed. Read More

## Shortcut for Addition of Consecutive Numbers

In this post I’ll share with you a useful shortcut maths trick for “finding out the sum of consecutive numbers”. For example, this trick I am talking about can help you in finding the sum of all the numbers from 23 to 31 or any other set of numbers.

Add the smallest number to the largest number of the given set of consecutive numbers. Then multiply the result by the number of numbers in the set. Finally divide the result by two.

Solving the above example, let’s find: 23+24+25+26+27+28+29+30+31 Read More

## Vedic Maths Subtraction

#### Learn Amazingly Fast Vedic Mathematics Subtraction

Very often we have to deduct a number from numbers like 1000, 10000, 100000 and so on.

This Vedic Maths Subtraction method found as sutra in ancient vedas, is given below is very useful for such subtractions.

Memory Trick: ALL FROM 9 AND THE LAST FROM 10

Use the formula all from 9 and the last from 10, to perform instant subtractions.

For example 1000 – 357 = ?      (subtraction from 1000)

We simply take each figure in 357 from 9 and the last figure from 10.
Step 1. 9-3 = 6
Step 2. 9-5 = 4
Step 3. 10-7 = 3

So the answer is 1000 – 357 = 643
And that’s all there is to it!

This always works for subtractions from numbers consisting of a 1 followed by noughts: 100; 1000; 10,000 etc.
Similarly 10,000 – 1049 = 8951      (subtraction from 10000)

9-1 = 8
9-0 = 9
9-4 = 5
10-9 = 1