# How Vedic Maths Can Help You Crack Competitive Examinations?

Practice makes a man perfect and Mathematics needs continuous practice to master skills. Fast calculation skills have a vital role to play in competitive exams as without these skills solving the quantitative aptitude section usually becomes quite difficult. Mental vigilance and logical efficiency is highly required to solve the Numerical Ability section of any competitive exam as these are essential elements for solving numerical questions.

Rather than using traditional methods of solving sums we can use Vedic maths tips and tricks to solve any sum. Vedic maths is a simple and alternative system of Mathematics. It has given a new approach to the students. Students develop problem solving ability and it also leads to the development of creative intelligence. It is very effective and at the same time it is easy to learn. One can do calculations much faster than done by using the conventional method that is taught in schools.

So today I thought of sharing two illustrations where you will find out how Vedic maths proves to be an effective medium to solve any sum quickly and easily.

**Technique 1: Technique to find square of a number whose unit digit is 5. **

Let’s directly go with numbers without variables. For example we need to find the **square of****35**.We have to keep in mind that the last two digits of squares of the number ending with 5 is 25. Now the first digit needs to get multiplied with its consecutive successor. For example, the first digit (of the number given 35) is 3 so its successor would be 4 hence the product will be 12.Thus we get answer in two parts 12 and 25 hence our answer is 1225.

Now let’s find the square of another number say **55. **As the number’s last digit is 5, after squaring the last two digits will be 25.The first digit of the number (55) is 5 and hence we need to multiply it with its successor i.e. 6 to get 30. Hence we get our answer in two parts 30and 25, so our answer is 3025.

Now what about the squares of a bigger number? Let us now find the **square of** **115**. Since the last digit of the number is 5 after squaring the last two digits will be 25 and the product of the first digit with its successor is 132. Following the same strategy, the answer will be 13225.

So next time you have something to square check with what digit does it end. If it is 1 or 5 you are little lucky.

**Technique 2: Technique for squaring a two digit number whose unit digit is 1.**

For example the first digit of a number is x and second digit is 1 then its square will be given by

x squared / 2 . x / 1 ( / is used as separator).

For example 21 squared = 2 squared / 2 . 2 / 1 = 441.

(31)^{2}= 3 squared / 2 . 3 /1 square= 961

(41)^{2}= 4 squared / 2 . 4 /1 square= 1681

(51)^{2}= 5 squared / 2 . 5 /1 square= 2601(Here the square of 5 is 25 but just because the product of 2.5 is 10 we write down 0 and add 1 to 25)

(91)^{2}= 9 squared / 2 . 9 /1 square= 8281

Now try to do these :

(71)^{2} = ?

(61)^{2} = ?

(75)^{2}=?

(85)^{2}=?

sir thanx it helped me a lot

pls give some tips for divided and multiple plication

Sir these tricks are very helpful for us.

Sir pls. keep it update then we will be update.

Thanks a lot.

Sir these trick are very helpful for us.

Sir pls. keep it update then we will be update.

Thanks a lot.

Sir u book is wonderful. Can u send me a pdf or doc file of ur book.pls sir study the gate exam. Questions.pls sir

Shortcuts r really great. Pls add more.

Thanks Sangeetha for appreciating. You can sign in for these posts to be delivered on your email id

This is very Good shortcut methods.. Awesome Thanks for sharing..

Now tricks