**Learn to Quickly Calculate Square of Any Three Digit Number**

The method of squaring any 3 digit number is an extension of my last post on finding square of any two digit number. To understand and appreciate squaring of 3 digit numbers you should be well versed with shortcut of squaring any 2 digit number. Let us start learning this with the help of an example.

**What is the square of 384?**

Step 1: To begin with ignore the 3 of 384. You are left with only 84, a two digit number. Using the method of squaring 2 digit numbers, find the square of 84. We get the answer as

Square of 8 | twice of 8 X 4 | square of 4

64 64 16

7056 (consolidating the result obtained above)

Step 2: This step is new and different from what we’ve learned in the previous post for squaring 2 digit numbers. Watch carefully.

We have to multiply the first and last digits of our original number and double it. Essentially, that is multiplying together 3 and 4 and then doubling it. Hence we get 24.

Add this number directly to the two left hand digits of our number obtained from the first step.

7056

Add 24 to 70. 70+24=94. So 7056 gets converted to 9456.

Step 3: In the first step we left out the first digit of our number and squared the last two digits. Now we will forget about the unit’s digit 4 and square the first two digits i.e. 38 as before just omitting to square the last digit 8.

Square 38 as a regular 2 digit number, except that you omit the 8 squared.

Square of 3 | twice of 3 X 8

9 | 48

Step 4: Consolidating this with the result obtained in step 2,

9 | 48 | 9456

14 7 456

Hence the answer is 147456.

I’ve shared this method of squaring 3 digit numbers as an extension to the shortcut of squaring 2 digit numbers. Initially you might feel that the traditional method is quicker than having to memorize and execute these steps. However, this method can prove to be quicker than the useful one only if you master this technique with lot of practice.

*Do you think this method will help you in reducing the time to calculate square of 3 digit numbers?*

## Recent Comments