Vedic Maths Tricks for Multiplication

Both the videos given below cover Vedic Maths Multiplication Trick i.e. The Criss-Cross Method or Urdhva Tiryak Sutra.

Each video is made using different tools and aids. I would request you to share your opinion on which format of the recording did you like more. Please share your views by posting a comment below. I intend to make more such videos after getting your feedback.

 Vedic Maths Multiplication Tutorial: Video 1

 

Vedic Maths Multiplication Tutorial: Video 2

The videos are posted without any sort of editing. Kindly ignore all kind of disturbances and aberrations. Your feedback will help me in improving the quality of future video tutorials, which will be posted for free on Quickermaths.com.  

Please follow and like us:

Base Method of Multiplication

Base method of multiplication derived from Vedic Mathematics can be applied for multiplication of two numbers close to 100.

This post in is in continuation of an earlier post named “Vedic Multiplication of two numbers close to hundred“. Though you can understand this post stand alone, yet I’ll recommend you to read the linked post before reading this one.

In this post I’ll explain how to multiply two numbers lesser than the base (in this case 100). In the earlier post it was about both numbers more than 100.

Read More

Please follow and like us:

Quick Multiplication up to 20 x 20

“I’m having trouble above 10×10.”

This was a statement I heard many times while interacting with students preparing for competitive examinations including CAT. This was in response to my appeal to them to memorize tables up to 20×20.

Today I am posting here on QuickerMaths.com, the method which I recommend to my students too.

How to multiply up to 20×20 in your head?

Assumption: You know your multiplication table reasonably well up to 10×10.

I am trying to explain this with an example, Read More

Please follow and like us:

Fast Multiplication Tricks

Simple Fast Multiplication Tricks & Techniques

Fast Multiplication by 5: Multiply by 10 (just place 0 after the original number) and divide the result by 2.
Fast Multiplication by 6: Sometimes subsequent multiplication by 3 and then 2 is easy.
Fast Multiplication by 9: Multiply by 10 (just place 0 after the original number) and subtract the original number.
Multiply by 12: Multiply by 10 and add twice the original number.
Multiply by 13: Multiply by 3 and add 10 times original number.
Multiply by 14: Multiply by 7 and then multiply by 2
Multiply by 15: Multiply by 10 and add 5 times the original number, as above.
Multiply by 16: You can double four times, if you want to. Or you can multiply by 8 and then by 2.
Multiply by 17: Multiply by 7 and add 10 times original number.
Multiply by 18: Multiply by 20 and subtract twice the original number (which is obvious from the first step).
Multiply by 19: Multiply by 20 and subtract the original number.
Multiply by 24: Multiply by 8 and then multiply by 3.
Multiply by 27: Multiply by 30 and subtract 3 times the original number (which is obvious from the first step).
Multiply by 45: Multiply by 50 and subtract 5 times the original number (which is obvious from the first step).
Multiply by 90: Multiply by 9 (as above) and put a zero on the right.
Multiply by 98: Multiply by 100 (just place 00 after the original number)and subtract twice the original number.
Multiply by 99: Multiply by 100 (just place 00 after the original number)and subtract the original number.

Did you liked the above fast multiplication tricks ?

Please leave a comment below, that will help us to improve

Please follow and like us:

Fast Multiplication by 5

This fast calculation trick or vedic maths trick will teach you how to multiply any number by 5. The concept can be divided in two parts as shown-
MULTIPLYING 5 TIMES AN EVEN NUMBER
Memory Trick: Halve the number you are multiplying by and place a zero after the number.
Example:
i. 5 × 136, half of 136 is 68, add a zero for an answer of 680.
ii. 5 × 874, half of 874 is 437; add a zero for an answer of 4370.
MULTIPLYING 5 TIMES AN ODD NUMBER: subtract one from the number you are multiplying, then halve that number and place a 5 after the resulting number.
Example:
343 x 5 = (343-1)/2 | 5 =  1715

This fast calculation trick or vedic maths trick will teach you how to multiply any number by 5. The concept can be divided in two parts as shown-

MULTIPLYING 5 TIMES AN EVEN NUMBER

Memory Trick: Halve the number you are multiplying by and place a zero after the number.

Example:

i. 5 × 136, half of 136 is 68, add a zero for an answer of 680.

ii. 5 × 874, half of 874 is 437; add a zero for an answer of 4370.

MULTIPLYING 5 TIMES AN ODD NUMBER: subtract one from the number Read More

Please follow and like us:

Vedic Multiplication of two numbers close to Hundred

Vedic Method of Multiplication: Base System of multiplication

Application: Multiplication of two numbers close to Hundred

Case 1: Both numbers greater than 100.

Rule: You will get the answer in two parts

First part, to get left hand side of the answer: Add the difference between 100 and either of the numbers to the other number

Second part, to get right hand side of the answer: multiply the difference from 100 of both the numbers

Example

103 x 104 = 10712

The answer is in two parts: 107 and 12,

107 is just 103 + 4 (or 104 + 3), and 12 is just 3 x 4.

Similarly 107 x 106 = 11342

107 + 6 = 113 and 7 x 6 = 42

123 x 103 = 12669

(123 + 3) | (23 x 3) = 126 | 69 =12669 .

 

If the multiplication of the offsets is more than 100 then this method won’t work. For example 123 x 105. Here offsets are 23 and 5.

Multiplication of 23 and 5 is 115 which are more than 100. So this method won’t work.

But it can still work with a little modification. Consider the following examples:

 

Example 1

122 x 123 = 15006

Step 1: 22 x 23 = 506 (as done earlier)

Step 2: 122 + 23 (as done earlier)

Step 3: Add the 5 (digit at 100s place) of 506 to step 2

Answer: (122 + 23 + 5) | (22 x 23) = 150 | 06 = 10506

 

Example 2

123 x 105 (Different representation but same method)

123 + 5 = 128

23 x 5 = 115

128 | 115

= 12915

 

In the next post I’ll tell you about vedic multiplication, i.e.,  how to multiply two numbers lesser than the base (in this case 100).

Here’s the promised post for you – http://www.quickermaths.com/base-method-of-multiplication/

If you liked this method of vedic multiplication included in ancient Vedic Maths, Please leave a comment to let us know.

Please follow and like us:

Vedic Multiplication by 9, 99, 999 and so on

When any number has to be multiplied by a series of 9s, like 9, 99, 999, 9999 and so on than we can apply this very simple vedic maths technique to increase your speed of calculation.

Multiplication with 9/ 99 / 999 and so on.

we know, 789 × 999 = 788,211

You will get the answers in two parts,

  • The left hand side of the answer: subtract 1 from 789, which is 788
  • The right hand side of the answer subtract 789 from 1000 = 1000-789= 211

Thus, 999 x 789 = 789-1   |  1000-789 = 788, 211 (answer)

{for the right hand side of the answer, 789 should be subtracted from (999+1)}

or,  99999 x 78 = 78-1   | 100000 – 78

= 7799922

{78 should be subtracted from (99999+1)}

Another example:

1203579 × 9999999 = 1203579-1   | 10000000- 1203579

=120357887964 21

Number in red is 1 less than 1203579. Number in blue is (10000000-1203579). Hence the answer.

This method has to be altered a little bit when number of 9s are lessers than the number of digit in the divisor.

1432  x 9 = 1432 (10 – 1) = 14320 – 1432 = 12888

So for multiplication with 9, put a zero after that number and subtract the number itself from that.

Likewise for 99 put two zeroes after that number .

3256 x 99 = 325600 – 3256 =  322344

Please follow and like us:

Vedic Multiplication by 11

Speed Vedic Multiplication Trick

Vedic Multiplication by 11

Step 1.

Assume that there are two invisible 0 (zeroes), one in front and one behind the number to be multiplied with 11

say if the number is 234, assume it to be  0 2 3 4 0

Step 2.

Start from the right, add the two adjacent digits and keep on moving left

02340

Add the last zero to the digit in the ones column (4), and write the answer below the ones column. Then add 4 with digit on the left i.e. 3. Next add 3 with 2. Next 2 with 0.

0+4 = 4

4+3 = 7

3+2 = 5

2+0 = 2

So answer is 2574

Similarly,

36 x 11 = 0+3   |   3+6   | 6+0  = 396

74 x 11 =0+ 7 |  7+4 |  4+0 =  7  | 11 |  4 = 814   (1 of 11 is carried over and added to next digit, so 7+1 = 8 )
6349 x 11 = (0+6)  |  (6+3)   |   (3+4)   |   (4+9)  |   9+0 =  69839

This method works for all the number, no matter how long or short, times 11. Just try it yourself and get amazed at the simplicity of the concept.

In the next post will learn Vedic Multilplication by 111, 1111, 11111, and so on.

Please follow and like us: